ETNEWS > 3C科技 > 3C 2017年07月15日 12:21

自駕車新AI學習模式 依外觀自動分辨行人、公車

實習記者黃肇祥/台北報導

自動駕駛、無人車的 AI 系統到底該如何設計比較安全呢?來自以色列的 Cortica 公司試圖找出最佳答案,他們開始研究與主流不同的 AI 學習模式,期望藉由 AI 自行辨別物體特徵加以分析,選擇最佳的處理方式。

▲▼自駕車新AI學習模式 依外觀自動分辨行人、公車(圖/翻攝 TechCrunch)

▲藉由車體周遭的感應器捕捉環境資訊,再藉由 AI 分析資料,讓車輛自動選擇最佳路徑。(圖/翻攝 TechCrunch)

汽車結合人工智慧早已不是新聞,但Cortica 與其他車廠最大的差別在於採用非監督式學習(Unsupervised Learning)來設計 AI 系統,這種學習方式不需要人力輸入標籤。舉例來說,普遍應用在其他 AI 系統的監督式學習(Supervised learning),需要靠著人類幫助電腦辨別特定物體,若要讓系統可以辨別停車的位置,工程師必須輸入停車的交通標誌,作為讓有所 AI 反應的記號,而在非監督式學習的機制中,AI 得自行根據物體的外觀與特色來組織、分類資訊。

我們可以從 Cortica 發布的影片中一探 AI 實際的運行模式,影片中所有物體都被依外觀特徵畫上不同的顏色區別,例如一般汽車是綠色、行人是紅色、腳踏車是藍色、公車是咖啡色、紅綠燈是黃色。

▲▼自駕車新AI學習模式 依外觀自動分辨行人、公車(圖/翻攝 TechCrunch)

▲根據物體不同的特徵,Cortica 研發的系統會自動以不同顏色區別。(圖/翻攝 Youtube)

Cortica 公司認為,這種學習方式更接近人類實際開車時的視覺感受,且系統也能更加靈活的思考,在各種天氣與路況下都能更好的適應,也能學習人類的手勢動作並預測其他車輛和行人的動作,縱使是尚未建檔的路況,非監督式學習也能夠幫助車輛安全行駛。不過要完成這樣的學習機制,數據的篩選與地圖資料數據將成為關鍵。

這項技術同樣仍在研發階段,距離上市推行仍需要一段時間。不管是哪一種學習方式,AI 面對變化莫測的十字路口,遇上突發狀況能否發揮出熟練駕駛的經驗與判斷能力,仍有待技術人員持續研究,但換個角度來思考 AI 的學習機制,想必也能讓這項技術早日成熟吧?

關鍵字:AI智慧車駕駛

※本文版權所有,非經授權,不得轉載。[ ETNEWS著作權聲明 ]

3C熱門新聞

想在YouTube搜到A片?請..

美國即日開放舊機升級愛瘋X計畫

HTC U11 Life官圖與..

索尼新感光元件可拍160公尺路..

庫克:Mac mini仍很重要

5吋雙鏡頭中階機 Nokia ..

蘋果公園是Apple最大的環保..

愛瘋8事件可能原因有三

別等iPhone X了 達人推..

愛瘋8 Plus 開箱動手玩

華為Mate 10 Pro開箱..

臉書「動態探索」網頁版正式啟用

三星Note 8黑色款即日上市

Apple Watch 3 開..

相關新聞

讀者迴響

熱門新聞

最夯影音

更多

熱門快報

回到最上面